Sinapses

Sinapse  é um tipo de junção especializada em que um terminal axonal faz contato com outro neurônio ou tipo celular. As sinapses podem ser elétricas ou químicas (maioria). 
Sinapses elétricas
As sinapses elétricas, mais simples e evolutivamente antigas, permitem a transferência direta da corrente iônica de uma célula para outra. Ocorrem em sítios especializados denominados junções gap ou junções comunicantes. Nesses tipos de junções as membranas pré-sinápticas (do axônio - transmissoras do impulso nervoso) e pós-sinápticas (do dendrito ou corpo celular - receptoras do impulso nervoso) estão separadas por apenas 3 nm. Essa estreita fenda é ainda atravessada por proteínas especiais denominadas conexinas. Seis conexinas reunidas formam um canal denominado conexon, o qual permite que íons passem diretamente do citoplasma de uma célula para o de outra. A maioria das junções gap permite que a corrente iônica passe adequadamente em ambos os sentidos, sendo desta forma, bidirecionais


Em invertebrados, as sinapses elétricas são comumente encontradas em circuitos neuronais que medeiam respostas de fuga. Em mamíferos adultos, esses tipos de sinapses são raras, ocorrendo freqüentemente entre neurônios nos estágios iniciais da embriogênese. 
Sinapses químicas
Via de regra, a transmissão sináptica no sistema nervoso humano maduro é química. As membranas pré e pós-sinápticas são separadas por uma fenda com largura de 20 a 50 nm - a fenda sináptica. A passagem do impulso nervoso nessa região é feita, então,  por substâncias químicas: os neuro-hormônios, também chamados mediadores químicos ou neurotransmissores, liberados na fenda sináptica. O terminal axonal típico contém dúzias de pequenas vesículas membranosas esféricas que armazenam neurotransmissores - as vesículas sinápticas. A membrana dendrítica relacionada com as sinapses (pós-sináptica) apresenta moléculas de proteínas especializadas na detecção dos neurotransmissores na fenda sináptica - os receptores. Por isso, a transmissão do impulso nervoso ocorre sempre do axônio de um neurônio para o dendrito ou corpo celular do neurônio seguinte.  Podemos dizer então que nas sinapses químicas, a informação que viaja na forma de impulsos elétricos ao longo de um axônio é convertida, no terminal axonal, em um sinal químico que atravessa a fenda sináptica. Na membrana pós-sináptica, este sinal químico é convertido novamente em sinal elétrico.







Como o citoplasma dos axônios, inclusive do terminal axonal, não possui ribossomos, necessários à síntese de proteínas, as proteínas axonais são sintetizadas no soma (corpo celular), empacotadas em vesículas membranosas e transportadas até o axônio pela ação de uma proteína chamada cinesina, a qual se desloca sobre os microtúbulos, com gasto de ATP. Esse transporte ao longo do axônio é denominado transporte axoplasmático e, como a cinesina só desloca material do soma para o terminal, todo movimento de material neste sentido é chamado de transporte anterógrado. Além do transporte anterógrado, há um mecanismo para o deslocamento de material no axônio no sentido oposto, indo do terminal para o soma. Acredita-se que este processo envia sinais para o soma sobre as mudanças nas necessidades metabólicas do terminal axonal. O movimento neste sentido é chamado transporte retrógrado.
As sinapses químicas também ocorrem nas junções entre as terminações dos axônios e os músculos; essas junções são chamadas placas motoras ou junções neuro-musculares.  



Por meio das sinapses, um neurônio pode passar mensagens (impulsos nervosos) para centenas ou até milhares de neurônios diferentes.
Neurotransmissores
A maioria dos neurotransmissores situa-se em três categorias: aminoácidos, aminas e peptídeos. Os neurotransmissores aminoácidos e aminas são pequenas moléculas orgânicas com pelo menos um átomo de nitrogênio, armazenadas e liberadas em vesículas sinápticas. Sua síntese ocorre no terminal axonal a partir de precursores metabólicos ali presentes. As enzimas envolvidas na síntese de tais neurotransmissores são produzidas no soma (corpo celular do neurônio) e transportadas até o terminal axonal e, neste local, rapidamente dirigem a síntese desses mediadores químicos. Uma vez sintetizados, os neurotransmissores aminoácidos e aminas são levados para as vesículas sinápticas que liberam seus conteúdos por exocitose. Nesse processo, a membrana da vesícula funde-se com a membrana pré-sináptica, permitindo que os conteúdos sejam liberados. A membrana vesicular é posteriormente recuperada por endocitose e a vesícula reciclada é recarregada com neurotransmissores. 
Os neurotransmissores peptídeos constituem-se de grandes moléculas armazenadas e liberadas em grânulos secretores. A síntese dos neurotransmissores peptídicos ocorre no retículo endoplasmático rugoso do soma. Após serem sintetizados, são clivados no complexo de golgi, transformando-se em neurotransmissores ativos,  que são secretados em grânulos secretores e transportados ao terminal axonal (transporte anterógrado) para serem liberados na fenda sináptica.
Diferentes neurônios no SNC liberam também diferentes neurotransmissores. A transmissão sináptica rápida na maioria das sinapses do SNC é mediada pelos neurotransmissores aminoácidos glutamato (GLU), gama-aminobutírico (GABA) e glicina (GLI). A amina acetilcolina medeia a transmissão sináptica rápida em todas as junções neuromusculares. As formas mais lentas de transmissão sináptica no SNC e na periferia são mediadas por neurotransmissores das três categorias.
O glutamato e a glicina estão entre os 20 aminoácidos que constituem os blocos construtores das proteínas. Conseqüentemente, são abundantes em todas as células do corpo. Em contraste, o GABA e as aminas são produzidos apenas pelos neurônios que os liberam.
O mediador químico adrenalina, além de servir como neurotransmissor no encéfalo,  também é liberado pela glândula adrenal para a circulação sangüínea.
Abaixo são citadas as funções específicas de alguns neurotransmissores.
  • endorfinas e encefalinas: bloqueiam a dor, agindo naturalmente no corpo como analgésicos.
  • dopamina: neurotransmissor inibitório derivado da tirosina. Produz sensações de satisfação e prazer. Os neurônios dopaminérgicos podem ser divididos em três subgrupos com diferentes funções. O primeiro grupo regula os movimentos: uma deficiência de dopamina neste sistema provoca a doença de Parkinson, caracterizada por tremuras, inflexibilidade, e outras desordens motoras, e em fases avançadas pode verificar-se demência. O segundo grupo, o mesolímbico, funciona na regulação do comportamento emocional. O terceiro grupo, o mesocortical, projeta-se apenas para o córtex pré-frontal. Esta área do córtex está envolvida em várias funções cognitivas, memória, planejamento de comportamento e pensamento abstrato, assim como em aspectos emocionais, especialmente relacionados com o stress. Distúrbios nos dois últimos sistemas estão associados com a esquizofrenia.




  • Serotonina: neurotransmissor derivado do triptofano, regula o humor, o sono, a atividade sexual, o apetite, o ritmo circadiano, as funções neuroendócrinas, temperatura corporal, sensibilidade à dor, atividade motora e funções cognitivas. Atualmente vem sendo intimamente relacionada aos transtornos do humor, ou transtornos afetivos e a maioria dos medicamentos chamados antidepressivos agem produzindo um aumento da disponibilidade dessa substância no espaço entre um neurônio e outro. Tem efeito inibidor da conduta e modulador geral da atividade psíquica. Influi sobre quase todas as funções cerebrais, inibindo-a de forma direta ou estimulando o sistema GABA.
  • GABA (ácido gama-aminobutirico): principal neurotransmissor inibitório do SNC. Ele está presente em quase todas as regiões do cérebro, embora sua concentração varie conforme a região. Está envolvido com os processos de ansiedade. Seu efeito ansiolítico seria fruto de alterações provocadas em diversas estruturas do sistema límbico, inclusive a amígdala e o hipocampo. A inibição da síntese do GABA ou o bloqueio de seus neurotransmissores no SNC, resultam em estimulação intensa, manifestada através de convulsões generalizadas.
  • Ácido glutâmico ou glutamato: principal neurotransmissor estimulador do SNC. A sua ativação aumenta a sensibilidade aos estímulos dos outros neurotransmissores.
Tipos de neurônios
 
De acordo com suas funções na condução dos impulsos, os neurônios podem ser classificados em:
 
1.    Neurônios receptores ou sensitivos (aferentes): são os que recebem estímulos sensoriais e conduzem o impulso nervoso ao sistema nervoso central.
2.    Neurônios motores ou efetuadores (eferentes): transmitem os impulsos motores (respostas ao estímulo).
3.    Neurônios associativos ou interneurônios: estabelecem ligações entre os neurônios receptores e os neurônios motores.


Células da Glia (neuróglia)
As células da neuróglia cumprem a função de sustentar, proteger, isolar e nutrir os neurônios. Há diversos tipos celulares, distintos quanto à morfologia, a origem embrionária e às funções que exercem. Distinguem-se, entre elas, os astrócitos, oligodendrocitos e micróglia. Têm formas estreladas e prolongações que envolvem as diferentes estruturas do tecido.


Os astrócitos são as maiores células da neuróglia e estão associados à sustentação e à nutrição dos neurônios. Preenchem os espaços entre os neurônios, regulam a concentração de diversas substâncias com potencial para interferir nas funções neuronais normais (como por exemplo as concentrações extracelulares de potássio), regulam os neurotransmissores (restringem a difusão de neurotransmissores liberados e possuem proteínas especiais em suas membranas que removem os neurotransmissores da fenda sináptica). Estudos recentes também sugerem que podem ativar a maturação e a proliferação de células-tronco nervosas adultas e ainda, que fatores de crescimento produzidos pelos astrócitos podem ser críticos na regeneração dos tecidos cerebrais ou espinhais danificados por traumas ou enfermidades.


Os oligodendrócitos são encontrados apenas no sistema nervoso central (SNC). Devem exercer papéis importantes na manutenção dos neurônios, uma vez que, sem eles, os neurônios não sobrevivem em meio de cultura. No SNC, são as células responsáveis pela formação da bainha de mielina. Um único oligodendrócito contribui para a formação de mielina de vários neurônios (no sistema nervoso periférico, cada célula de Schwann mieliniza apenas um único axônio)
A micróglia é constituída por células fagocitárias, análogas aos macrófagos e que participam da defesa do sistema nervoso.





Origem do sistema nervoso

O sistema nervoso origina-se da ectoderme embrionária e se localiza na região dorsal. Durante o desenvolvimento embrionário, a ectoderme sofre uma invaginação, dando origem à goteira neural, que se fecha, formando o tubo neural. Este possui uma cavidade interna cheia de líquido, o canal neural.
Em sua região anterior, o tubo neural sofre dilatação, dando origem ao encéfalo primitivo. Em sua região posterior, o tubo neural dá origem à medula espinhal. O canal neural persiste nos adultos, correspondendo aos ventrículos cerebrais, no interior do encéfalo, e ao canal do epêndimo, no interior da medula.
Durante o desenvolvimento embrionário, verifica-se que a partir da vesícula única que constitui o encéfalo primitivo, são formadas três outras vesículas: a primeira, denominada prosencéfalo (encéfalo anterior); a segunda, mesencéfalo (encéfalo médio) e a terceira, rombencéfalo (encéfalo posterior).
O prosencéfalo e o rombencéfalo sofrem estrangulamento, dando origem, cada um deles, a duas outras vesículas. O mesencéfalo não se divide. Desse modo, o encéfalo do embrião é constituído por cinco vesículas em linha reta. O prosencéfalo divide-se em telencéfalo (hemisférios cerebrais) e diencéfalo (tálamo e hipotálamo); o mesencéfalo não sofre divisão e o romboencéfalo divide-se em metencéfalo (ponte e cerebelo) e mielencéfalo (bulbo). As divisões do S.N.C se definem já na sexta semana de vida fetal.



1- tubo neural
2- Prosencéfalo
3- Mesencéfalo
4- Rombencéfalo
5- Telencéfalo
6- Diencéfalo
7- Metencéfalo
8- Mielencéfalo
9- Quarto ventrículo
10- Aqueduto de Silvio
11- Tálamo
12- Terceiro ventrículo
13- Ventrículo lateral


  • Cavidade do telencéfalo: ventrículo lateral
  • Cavidade do diencéfalo: III ventrículo
  • Cavidade do metencéfalo: se abre para formar o IV ventrículo


1- Prosencéfalo
2- Mesencéfalo
3- Rombencéfalo
4- Futura medula espinhal
5- Diencéfalo
6- Telencéfalo
7- Mielencéfalo, futuro bulbo
8- Medula espinhal
9- Hemisfério cerebral
10- Lóbulo olfatório
11- Nervo óptico
12- Cerebelo
13- Metencéfalo




1- Prosencéfalo
2- Mesencéfalo
3- Metencéfalo
4- Mielencéfalo
5- Hipotálamo
6- Ventrículo lateral
7- Quiasma óptico
8- Nervo óptico
9- Hemisférios cerebrais
10- Epitálamo
11- Tálamo
12- Glândula pineal
13- Nervo olfatório
14- Corpo mamilar
15- Telencéfalo
16- Diencéfalo
17- Hipófise
18- Corpo caloso
19- Cerebelo
20- Corpo estriado
21- Ponte
22- Hipotálamo
23- Bulbo olfatório
24- Fórnix
25- Aqueduto cerebral
26- Tubérculo quadrigêmio
27- Quarto ventrículo



0 comentários:

Postar um comentário

Seu comentario é fundamental para o sucesso desse blog.
Então não esqueça de comentar, pois assim poderemos aprimorar cada vez mais.

 
Enfermagem 24hr | by TNB ©2010